Appendix E

Statistical Analysis Output

Statistical Ouputs

NORMALITY TESTS FOR KESTREL TEQ DATA

Kolmogorov-Smirnov One Sample Test using Normal(0.00,1.00) distribution

Variable	N-of-Cases	MaxDif	Lilliefors Probability (2-tail)
FULL	46.00000	0.32058	0.00000
QUANT	46.00000	0.32999	0.00000
LN_FULL	46.00000	0.10447	0.22547
LN_QUAN	44.00000	0.14223	0.02577

>KS FULL QUANT LN_FULL LN_QUAN / LILLIEFORS

The following results are for:

 C_P = R

Data for the following results were selected according to: (MEASURE\$= "PCDD/PCDF")

Kolmogorov-Smirnov One Sample Test using Normal(0.00,1.00) distribution

Variable	N-of-Cases	MaxDif	Lilliefors Probability	(2-tail)
FULL	16.00000	0.37570	0.00000	
QUANT	16.00000	0.36397	0.00000	
LN_FULL	16.00000	0.24419	0.01161	
LN_QUAN	16.00000	0.12454	0.81933	

The following results are for:

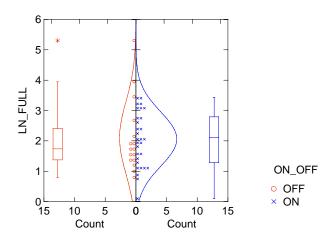
C P\$ = F

Kolmogorov-Smirnov One Sample Test using Normal(0.00,1.00) distribution

Variable	N-of-Cases	MaxDif	Lilliefors Probability	(2-tail)
FULL	19.00000	0.19174	0.06429	
QUANT	19.00000	0.24186	0.00469	
LN_FULL	19.00000	0.11034	0.88078	
LN_QUAN	17.00000	0.11890	0.84907	

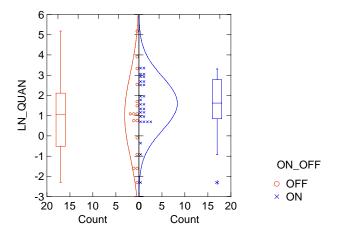
The following results are for:

 C_P \$ = C


Kolmogorov-Smirnov One Sample Test using Normal(0.00,1.00) distribution

Variable	N-of-Cases	MaxDif	Lilliefors Probability ((2-tail)
FULL	11.00000	0.19686	0.29192	
QUANT	11.00000	0.22786	0.11547	
LN_FULL	11.00000	0.13705	1.00000	
LN_QUAN	11.00000	0.18039	0.44310	

T-TEST ON KESTREL TEQ DATA


Two-sample t test on LN_FULL grouped by ON_OFF\$

Group	N	Mean	SD
OFF	16	2.102	1.19986
ON	30	2.060	20 0.89807
Separate Variance t =	0.12401 df =	24.2	Prob = 0.90233
Difference in Means =	0.04239 95	.00% CI =	-0.66287 to 0.7476
Pooled Variance t =	0.13543 df =	44	Prob = 0.89289
Difference in Means =	0.04239 95	00% CT -	-0.58844 to 0.6732

Two-sample t test on LN_QUAN grouped by ON_OFF\$

Group	N Mean	SD
OFF	16 1.02037	2.06487
ON	28 1.60179	1.33686
Separate Variance t = Difference in Means =	-1.01165 df = 22.3 -0.58142 95.00% CI =	Prob = 0.32254 = -1.77229 to 0.60945
Pooled Variance t = Difference in Means =	-1.13504 df = 42 -0.58142 95.00% CI =	Prob = 0.26279 = -1.61517 to 0.45233

ANOVA and Dunnets on Kestrels Including case 28 - Sample AKEG012

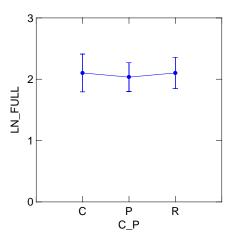
>GLM

>MODEL LN_FULL = CONSTANT + C_P\$

>ESTIMATE

Data for the following results were selected according to: $({\tt MEASURE\$="PCDD/PCDF"})$

Effects coding used for categorical variables in model. Categorical values encountered during processing are: C_P \$ (3 levels)


C, P, R

Dep Var: LN_FULL N: 46 Multiple R: 0.03323 Squared multiple R: 0.00110

Analysis of Variance

Source	Sum-of-Squares	df	Mean-Square	F-ratio	P
C_P\$	0.04971	2	0.02485	0.02377	0.97652
Error	44.95341	43	1.04543		

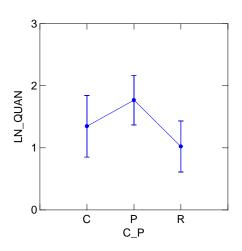
Least Squares Means


```
*** WARNING ***
             28 is an outlier
                                  (Studentized Residual = 3.67342)
Case
Durbin-Watson D Statistic
First Order Autocorrelation
>HYPOTHESIS
>POST C_P$/ DUNNETT ONE CONTROL="R"
COL/
ROW C_P$
 1 C
 2 P
 3 R
Using least squares means.
Post Hoc test of LN_FULL
                            3.00000
Dunnett Test with control =
>TEST
______
Using model MSE of 1.045 with 43 df.
Matrix of mean differences from control:
            1
                   -0.00018
            2
                   -0.06683
            3
                    0.00000
Dunnett One Sided Test.
Matrix of pairwise comparison probabilities:
            1
                    0.50000
            2
                    0.48683
            3
                    1.00000
>MODEL LN_QUAN = CONSTANT + C_P$
>ESTIMATE
Data for the following results were selected according to:
     (MEASURE$= "PCDD/PCDF")
```

Effects coding used for categorical variables in model.

Categorical values encountered during processing are: C_P\$ (3 levels)

C, P, R


2 case(s) deleted due to missing data.

Dep Var: LN_QUAN N: 44 Multiple R: 0.19991 Squared multiple R: 0.03996

Analysis of Variance

Source Sum-of-Squares df Mean-Square F-ratio Ρ C_P\$ 4.62171 2 2.31086 0.85333 0.43342 Error 111.02951 2.70804 41

Least Squares Means

Durbin-Watson D Statistic 1.619 First Order Autocorrelation 0.181

>HYPOTHESIS

>POST C_P\$/ DUNNETT ONE CONTROL="R"

COL/

ROW C_P\$

1 C 2 P

3 R

Using least squares means.

Post Hoc test of LN_QUAN

3.00000 Dunnett Test with control =

>TEST

Using model MSE of 2.708 with 41 df. $\,$

Matrix of mean differences from control:

1 0.32624 2 0.74654 3 0.00000

Dunnett One Sided Test.

Matrix of pairwise comparison probabilities:

1 0.41775 2 0.16818 3 1.00000

ANOVA and Dunnets on Kestrels Excluding case 28 - Sample AKEG012

>SELECT (MEASURE\$= "PCDD/PCDF") AND (SITE\$<> "AKEG012")
>GLM
>MODEL LN_FULL = CONSTANT + C_P\$

>ESTIMATE

Data for the following results were selected according to: (MEASURE\$= "PCDD/PCDF") AND (SITE\$<> "AKEG012")

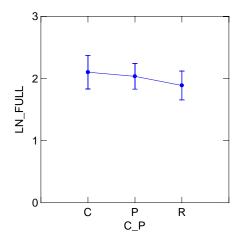
Effects coding used for categorical variables in model.

Categorical values encountered during processing are: C_P \$ (3 levels)

C, P, R

Dep Var: LN_FULL N: 45 Multiple R: 0.09704 Squared multiple R: 0.00942

Analysis of Variance


 Source
 Sum-of-Squares
 df
 Mean-Square
 F-ratio
 P

 C_P\$
 0.32344
 2
 0.16172
 0.19964
 0.81980

 Error
 34.02247
 42
 0.81006
 0.81006

Least Squares Means

Durbin-Watson D Statistic 1.580

```
First Order Autocorrelation 0.190
>HYPOTHESIS
>POST C_P$/ DUNNETT ONE CONTROL="R"
COL/
ROW C_P$
 1 C
 2 P
 3 R
Using least squares means.
Post Hoc test of LN_FULL
                            3.00000
Dunnett Test with control =
>TEST
______
Using model MSE of 0.810 with 42 df.
Matrix of mean differences from control:
           1
                   0.21324
                   0.14658
            3
                   0.00000
Dunnett One Sided Test.
Matrix of pairwise comparison probabilities:
                   0.38877
            2
                   0.42658
            3
                   1.00000
```

Normality tests for kestrel TCDD-EQ data

>USE "D:\PAUL\Projects\RMA\absolute\kestrel bioassay.SYD" SYSTAT Rectangular file D:\PAUL\Projects\RMA\absolute\kestrel bioassay.SYD, created Thu Aug 10, 2000 at 16:47:14, contains variables:

```
SAMP$ SITE$ TCDDEQ_MAX TCDDEQ_FULL TCDDEQ_PART LN_MAX LN_FULL LN_PART ON_OFF$ MAX_15 FULL_15 >ESAVE "C:\Documents and Settings\jonespa7\Desktop\rma report\kestrel bioassay.SYD
```

46 cases and 11 variables processed and saved.

>USE "C:\Documents and Settings\jonespa7\Desktop\rma report\kestrel bioassay.SYD" SYSTAT Rectangular file C:\Documents and Settings\jonespa7\Desktop\rma report\kestrel bioassay.SYD,

created Thu Sep 07, 2000 at 02:08:54, contains variables:

```
SAMP$ SITE$ TCDDEQ_MAX TCDDEQ_FULL TCDDEQ_PART LN_MAX LN_FULL LN_PART ON_OFF$ MAX_15 FULL_15 >NPAR
```

>KS TCDDEQ_FULL LN_FULL / LILLIEFORS

 ${\tt Kolmogorov-Smirnov\ One\ Sample\ Test\ using\ Normal(0.00,1.00)\ distribution}$

```
        Variable
        N-of-Cases
        MaxDif
        Lilliefors
        Probability
        (2-tail)

        TCDDEQ_FULL
        46.00000
        0.42573
        0.00000

        LN_FULL
        46.00000
        0.16135
        0.00421
```

>BY SITE\$

```
>KS TCDDEQ_FULL LN_FULL / LILLIEFORS
```

```
The following results are for:
SITE$ = R
```

Kolmogorov-Smirnov One Sample Test using Normal(0.00,1.00) distribution

Variable	N-of-Cases	MaxDif	Lilliefors Probability (2-tail)
TCDDEQ_FULL	16.00000	0.41489	0.00000
LN_FULL	16.00000	0.22299	0.03248

The following results are for:

SITE\$ = P

Kolmogorov-Smirnov One Sample Test using Normal(0.00,1.00) distribution

Variable	N-of-Cases	MaxDif	Lilliefors Probability	(2-tail)
TCDDEQ_FULL	19.00000	0.30507	0.00006	
LN_FULL	19.00000	0.14250	0.39878	

The following results are for:

SITE\$ = C

Kolmogorov-Smirnov One Sample Test using Normal(0.00,1.00) distribution

Variable	N-of-Cases	MaxDif	Lilliefors Probability (2-tail)
TCDDEQ_FULL	11.00000	0.46705	0.00000
LN_FULL	11.00000	0.20775	0.21526

t-test on TCDD-EQ in kestrel eggs

Mean

-0.52067 95.00% CI = -1.29004 to 0.24870

t test on 1055 ig in kestici e

Ν

>TEST LN_FULL * ON_OFF\$

Group

Two-sample t test on LN_FULL grouped by ON_OFF\$

U		30	0.76.	303	1.00/55
R		16	1.28	450	1.50247
	Separate Variance t =	_1 22028	df = 23.3	Prob =	0.23084
	Difference in Means =		95.00% CI =		
	Pooled Variance t =	-1.36389	df = 44	Prob =	0.17954

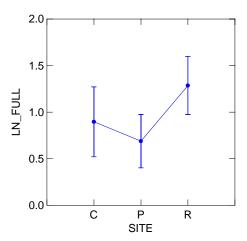
2.0

ANOVA and Dunnetts on TCDD-EQ in kestrel eggs

>MODEL LN_FULL = CONSTANT + SITE\$ >ESTIMATE

Difference in Means =

Effects coding used for categorical variables in model. Categorical values encountered during processing are: SITE\$ (3 levels)


C, P, R

Dep Var: LN_FULL N: 46 Multiple R: 0.21186 Squared multiple R: 0.04489

Analysis of Variance							
Source	Sum-of-Squares	aī	Mean-Square	F-ratio	Р		
SITE\$	3.13038	2	1.56519	1.01041	0.37255		
Error	66.60987	43	1.54907				

1 06755

Least Squares Means

*** WARNING ***

Case 13 is an outlier (Studentized Residual = 3.22378)

Durbin-Watson D Statistic 2.343

First Order Autocorrelation -0.178

>HYPOTHESIS

>POST SITE\$/ DUNNETT ONE CONTROL="R"

COL/

ROW SITE\$

1 C

2 P3 R

Using least squares means.

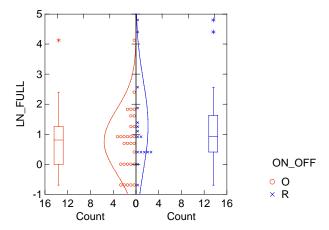
Post Hoc test of LN_FULL

Dunnett Test with control = 3.00000

>TEST

Using model MSE of 1.549 with 43 df.

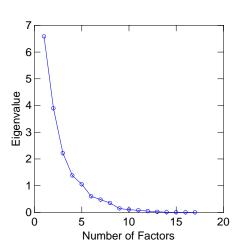
Matrix of mean differences from control:


 $\begin{array}{ccc} 1 & & -0.38890 \\ 2 & & -0.59695 \\ 3 & & 0.00000 \end{array}$

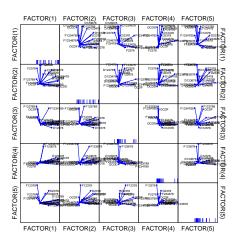
Dunnett One Sided Test.

Matrix of pairwise comparison probabilities:

1 0.32301 2 0.14032 3 1.00000


PCA for kestrel TEQs

SYSTAT Rectangular file C:\WINDOWS\Desktop\rma report\Kestrel pca.SYD, created Mon Sep 11, 2000 at 16:05:58, contains variables:


F1234789 D1 F123789 D1	23478 F	N_OFF\$ 123478 F12378 OCDF	TYPE\$ D123678 F234678 FACTOR(1	F12 F2	34678 3678 3478 JUARE	F1234678 D123789 D2378 PROB
Latent Roots (Eig	envalues)					
	1 6.5826816	2 3.8933646	3 2.2185438	4 1.3821641	5 1.0557783	
	6 0.6036351	7 0.4797428	8 0.3526021	9 0.1493426	10 0.1068453	
	11 0.0801407	12 0.0481192	13 0.0251069	14 0.0096874	15 0.0058329	
	16 0.0036643	17 0.0027483				
Component loading						
D1234678 F1234678 F1234789 D123478 F123478 D123678 F123678 D123789 F123789 D12378 F12378 F234678 F23478 D2378 F23478 D2378 F2378 CCDD	1 0.6527316 0.3829971 0.3324461 0.8952316 0.6181440 0.8254197 0.6649513 0.8014714 0.1153678 0.9160813 0.0912784 0.7298377 0.6430878 0.8189469 0.4718198 0.4994594	2 -0.6206002 -0.2613548 -0.0722620 -0.2662874 0.6202408 -0.4773144 0.1212350 -0.4656529 0.6303463 -0.0037273 0.5741820 0.4149518 0.5140900 0.2992664 0.8275377 -0.6523104	3 0.3360551 -0.1253363 0.7112302 -0.0001462 -0.2472404 0.1197493 -0.2791833 0.1375921 0.6215269 -0.3120601 0.4849921 -0.0562353 -0.4551955 0.0944461 0.0157883 0.2625173	4 0.0976383 -0.8366590 -0.0996611 0.0228224 0.0583397 0.0613068 -0.6640516 0.0896673 -0.1815136 0.1398184 0.0675804 0.1229078 0.1454234 0.1289132 0.1030306 0.2097123	5 0.0793078 -0.2222827 0.4394288 -0.0497169 0.3697176 0.0156384 0.0782713 -0.1558611 0.2290797 0.0257936 -0.5842807 -0.2000515 0.2622059 -0.3516021 -0.0213735 0.0822585	

OCDF	0.0148589	0.3953832	0.6358978	-0.2036700	0.0548464
Variance Explained	l by Component	s			
	1	2	3	4	5
	6.5826816	3.8933646	2.2185438	1.3821641	1.0557783
Percent of Total V	ariance Expla				
	1	2	3	4	5
	38.7216566	22.9021449	13.0502574	8.1303768	6.2104603
Rotated Loading Ma	trix (VARIMA	.X, Gamma =	1.0000)		
	1	2	3	4	5
D1234678	0.9559822	-0.0611895	0.1064884	0.0699266	-0.0779973
F1234678	0.2140860	-0.0811137	-0.0399112	0.9620368	0.0242970
F1234789	0.4526950	-0.0125521	0.7723970	-0.0215069	-0.1499020
D123478	0.8016616	0.3832386	-0.0579735	0.2694028	0.0993447
F123478	0.0011321	0.9619862	0.1913169	0.0635532	-0.0443087
D123678	0.9229424	0.1917277	-0.0227028	0.1957829	-0.0078187
F123678	0.1738836	0.4957480	0.0644676	0.8350452	-0.0665910
D123789	0.9102760	0.1347010	-0.0824537	0.1873211	0.1477127
F123789	-0.1738324	0.2369990	0.8647000	-0.0123629	0.2193660
D12378	0.5950431	0.7168894	-0.2162915	0.1963821	0.0588226
F12378	-0.1380702	0.0617187	0.3414493	-0.0787244	0.8795041
F234678	0.2737414	0.6875894	0.0348693	0.1116461	0.4491583
F23478	0.0458522	0.9808316	-0.0767577	0.0588829	-0.0382255
D2378	0.4507736	0.5736509	0.0593332	0.1370242	0.5956752
F2378	-0.1465836	0.7932059	0.2953295	-0.0226759	0.4246856
OCDD	0.8712478	-0.1253260	-0.0015554	-0.0608415	-0.1270672
OCDF	-0.1014743	-0.0234069	0.7236510	0.0240430	0.2651614
"Variance" Explain	ed by Rotated	Components			
	1	2	3	4	5
	4.9924382	4.3666639	2.1935594	1.8626224	1.7172484
Percent of Total V	ariance Expla	ined			
	1	2	3	4	5
	29.3672838	25.6862581	-	=	
	∠9.36/2838	∠5.686∠581	12.9032904	10.9566022	10.1014615

Scree Plot

Factor Loadings Plot

Mann Whitney U test on owl body burdens

SYSTAT Rectangular file C:\WINDOWS\Desktop\rma report\BURDEN.SYD, created Thu Sep 14, 2000 at 07:38:30, contains variables:

SAMP\$ SITE\$ BURDEN

Categorical values encountered during processing are: SITE\$ (2 levels)

0, R

Kruskal-Wallis One-Way Analysis of Variance for 8 cases Dependent variable is BURDEN Grouping variable is SITE\$

```
Count
                     Rank Sum
   Group
 0
                  3
                        18.000
 R
                  5
                        18.000
Mann-Whitney U test statistic =
                                    12.000
Probability is 0.180
                               1.800 with 1 df
Chi-square approximation =
Mann Whitney U for owls by Age (unknowns not considered)
The following results are for:
  SITE$
              = 0
Data for the following results were selected according to:
     (MEASURE$= "PCDD/PCDF") AND (AGE$<> "U")
Categorical values encountered during processing are:
AGE$ (2 levels)
  A, J
Kruskal-Wallis One-Way Analysis of Variance for 13 cases
Dependent variable is FULL
Grouping variable is AGE$
   Group
              Count Rank Sum
                  4 43.0000000
                  9 48.0000000
 J
Mann-Whitney U test statistic = 33.0000000
Probability is 0.0206376
Chi-square approximation = 5.3571429 with 1 df
Kruskal-Wallis One-Way Analysis of Variance for 13 cases
Dependent variable is QUANT
Grouping variable is AGE$
   Group
              Count Rank Sum
                 4 43.0000000
 Α
 J
                  9 48.0000000
Mann-Whitney U test statistic = 33.0000000
Probability is 0.0206376
Chi-square approximation =
                           5.3571429 with 1 df
The following results are for:
  SITES
              = R
Data for the following results were selected according to:
     (MEASURE$= "PCDD/PCDF") AND (AGE$<> "U")
Categorical values encountered during processing are:
AGE$ (2 levels)
  A, J
Kruskal-Wallis One-Way Analysis of Variance for 10 cases
Dependent variable is FULL
Grouping variable is AGE$
               Count Rank Sum
                  5 26.0000000
 Α
                  5 29.0000000
 J
Mann-Whitney U test statistic = 11.0000000
Probability is 0.7540225
Chi-square approximation = 0.0981818 with 1 df
Kruskal-Wallis One-Way Analysis of Variance for 10 cases
```

Dependent variable is QUANT Grouping variable is AGE\$

```
Count
                      Rank Sum
    Group
                  5 30.0000000
 Α
 J
                  5 25.0000000
Mann-Whitney U test statistic =
                                 15.0000000
Probability is 0.6015081
Chi-square approximation =
                             0.2727273 with 1 df
Mann Whitney U for owls by Age (unknowns not considered)
The following results are for:
  AGE$
               = J
Data for the following results were selected according to:
     (MEASURE$= "PCDD/PCDF")
Categorical values encountered during processing are:
SITE$ (2 levels)
  O, R
Kruskal-Wallis One-Way Analysis of Variance for 14 cases
Dependent variable is FULL
Grouping variable is SITE$
   Group
               Count
                      Rank Sum
 0
                  9 67.0000000
                  5 38.0000000
 R
                                 22.0000000
Mann-Whitney U test statistic =
Probability is 0.9468471
Chi-square approximation = 0.0044444 with 1 df
Kruskal-Wallis One-Way Analysis of Variance for 14 cases
Dependent variable is QUANT
Grouping variable is SITE$
                      Rank Sum
   Group
               Count
                  9 77.0000000
5 28.0000000
 0
 R
Mann-Whitney U test statistic =
                                 32.0000000
Probability is 0.2052745
Chi-square approximation =
                             1.6044444 with 1 df
The following results are for:
  AGES
              = A
Data for the following results were selected according to:
      (MEASURE$= "PCDD/PCDF")
Categorical values encountered during processing are:
SITE$ (2 levels)
  O, R
Kruskal-Wallis One-Way Analysis of Variance for 12 cases
Dependent variable is FULL
Grouping variable is SITE$
    Group
               Count
                      Rank Sum
                  7 57.0000000
 Ω
 R
                  5 21.0000000
Mann-Whitney U test statistic =
                                 29.0000000
Probability is 0.0618185
Chi-square approximation = 3.4879121 with 1 df
Kruskal-Wallis One-Way Analysis of Variance for 12 cases
```

Dependent variable is QUANT

Grouping variable is SITE\$

Group Count Rank Sum
O 7 57.0000000
R 5 21.0000000

Mann-Whitney U test statistic = 29.0000000

Probability is 0.0618185

Chi-square approximation = 3.4879121 with 1 df

KS tests on owl data (unknowns not considered)

SYSTAT Rectangular file C:\WINDOWS\Desktop\rma report\absolute data\Owlsumm4.syd, created Mon Sep 11, 2000 at 13:59:58, contains variables:

SAMP\$ SITE\$ AGE\$ MEASURE\$ FULL PARTIAL QUANT LN_FULL LN_QUANT FULL_15 QUAN_15 LN_FULL_15

Data for the following results were selected according to: (MEASURE\$= "PCDD/PCDF")

Kolmogorov-Smirnov One Sample Test using Normal(0.00,1.00) distribution

Variable	N-of-Cases	MaxDif	Lilliefors Probability	(2-tail)
FULL	26.000	0.257	0.000	
QUANT	26.000	0.262	0.000	
LN_FULL	26.000	0.081	1.000	
LN_QUANT	26.000	0.115	0.499	

The following results are for:

SITE\$ = O AGE\$ = J

Data for the following results were selected according to: (MEASURE\$= "PCDD/PCDF")

Kolmogorov-Smirnov One Sample Test using Normal(0.00,1.00) distribution

Variable	N-of-Cases	MaxDif	Lilliefors Probability	(2-tail)
FULL	9.000	0.176	0.697	
QUANT	9.000	0.198	0.444	
LN_FULL	9.000	0.163	0.875	
LN_QUANT	9.000	0.201	0.410	

The following results are for:

SITE\$ = O AGE\$ = A

Data for the following results were selected according to: (MEASURE\$= "PCDD/PCDF")

Kolmogorov-Smirnov One Sample Test using Normal(0.00,1.00) distribution

```
Variable
             N-of-Cases
                            MaxDif Lilliefors Probability (2-tail)
FULL
                  4.000
                             0.263
                                           0.635
QUANT
                             0.262
                  4.000
                                           0.644
LN_FULL
                  4.000
                            0.237
                                          0.965
LN_QUANT
                  4.000
                            0.236
                                           0.979
```

The following results are for:

SITE\$ = O AGE\$ = U

Kolmogorov-Smirnov One Sample Test using Normal(0.00,1.00) distribution

Variable	N-of-Cases	MaxDif	Lilliefors Probability (2-tail)
FULL	3.000	0.304	0.576	
QUANT	3.000	0.302	0.590	
LN_FULL	3.000	0.201	1.000	
LN_QUANT	3.000	0.190	1.000	

The following results are for:

SITE\$ = R AGE\$ = A

Kolmogorov-Smirnov One Sample Test using Normal(0.00,1.00) distribution

Variable	N-of-Cases	MaxDif	Lilliefors Probability	(2-tail)
FULL	5.000	0.401	0.009	
QUANT	5.000	0.386	0.014	
LN_FULL	5.000	0.302	0.165	
LN_QUANT	5.000	0.203	1.000	

The following results are for:

SITE\$ = R AGE\$ = J

Kolmogorov-Smirnov One Sample Test using Normal(0.00,1.00) distribution

Variable	N-of-Cases	MaxDif	Lilliefors Probability	(2-tail)
FULL	5.000	0.207	1.000	
QUANT	5.000	0.193	1.000	
LN_FULL	5.000	0.234	0.681	
LN_QUANT	5.000	0.252	0.487	

KS tests on owl data (unknowns not considered)

The following results are for:

AGE\$ = J SITE\$ = O

Data for the following results were selected according to: (MEASURE\$= "PCDD/PCDF")

Kolmogorov-Smirnov One Sample Test using Normal(0.00,1.00) distribution

```
Variable
                          MaxDif Lilliefors Probability (2-tail)
            N-of-Cases
             9.0000000 0.1760528 0.6971421
FULL
                       0.1979361
QUANT
             9.0000000
                                     0.4440426
             9.0000000
                                     0.8752114
LN_FULL
                        0.1632342
             9.0000000
LN_QUANT
                        0.2014190
                                     0.4102769
```

The following results are for:

AGE\$ = ASITE\$ = O

Data for the following results were selected according to: (MEASURE\$= "PCDD/PCDF")

Kolmogorov-Smirnov One Sample Test using Normal(0.00,1.00) distribution

Variable N-of-Cases MaxDif Lilliefors Probability (2-tail) FULL 7.0000000 0.2697553 0.1384661

```
0.1436803
1.0000000
1.0000000
   QUANT
                 7.0000000
                             0.2684131
   LN_FULL
                 7.0000000
                             0.1304922
  LN_QUANT
                 7.0000000
                             0.1264786
The following results are for:
  AGES
        = A
  SITE$
               = R
Data for the following results were selected according to:
      (MEASURE$= "PCDD/PCDF")
Kolmogorov-Smirnov One Sample Test using Normal(0.00,1.00) distribution
                               MaxDif Lilliefors Probability (2-tail)
  Variable
               N-of-Cases
  FULL
                5.0000000 0.4008231
                                        0.0085123
   OUANT
                 5.0000000 0.3857994
                                           0.0143068
                 5.0000000 0.3020146
                                           0.1648025
  LN_FULL
  LN_QUANT
                 5.0000000
                             0.2034991
                                          1.0000000
The following results are for:
           = J
  AGE$
  SITES
               = R
Data for the following results were selected according to:
      (MEASURE$= "PCDD/PCDF")
Kolmogorov-Smirnov One Sample Test using Normal(0.00,1.00) distribution
                                MaxDif Lilliefors Probability (2-tail)
  Variable
                N-of-Cases
  FULL
                 5.0000000
                            0.2071441
                                        1.0000000
  OUANT
                 5.0000000
                            0.1929674
                                           1.0000000
  LN FULL
                 5.0000000
                             0.2340969
                                           0.6811454
  LN_QUANT
                 5.0000000
                             0.2524854
                                          0.4874900
Mann-Whitney U test for Owls (unknowns not considered)
The following results are for:
  AGE$
              = <sub>1</sub>T
Data for the following results were selected according to:
     (MEASURE$= "PCDD/PCDF")
Categorical values encountered during processing are:
SITE$ (2 levels)
  O, R
Kruskal-Wallis One-Way Analysis of Variance for 14 cases
Dependent variable is FULL
Grouping variable is SITE$
               Count Rank Sum
   Group
                9 67.0000000
  0
                  5 38.0000000
 R
Mann-Whitney U test statistic = 22.0000000
Probability is 0.9468471
Chi-square approximation = 0.0044444 with 1 df
Kruskal-Wallis One-Way Analysis of Variance for 14 cases
Dependent variable is QUANT
Grouping variable is SITE$
               Count
                      Rank Sum
   Group
  0
                  9 77.0000000
                  5 28.0000000
Mann-Whitney U test statistic = 32.0000000
Probability is 0.2052745
```

```
Chi-square approximation =
                             1.6044444 with 1 df
The following results are for:
  AGE$
               = A
Data for the following results were selected according to:
     (MEASURE$= "PCDD/PCDF")
Categorical values encountered during processing are:
SITE$ (2 levels)
  O, R
Kruskal-Wallis One-Way Analysis of Variance for 9 cases
Dependent variable is FULL
Grouping variable is SITE$
               Count Rank Sum
   Group
 0
                  4 28.0000000
 R
                  5 17.0000000
Mann-Whitney U test statistic = 18.0000000
                 0.0500435
Probability is
Chi-square approximation = 3.8400000 with 1 df
Kruskal-Wallis One-Way Analysis of Variance for 9 cases
Dependent variable is QUANT
Grouping variable is SITE$
               Count Rank Sum
    Group
 0
                  4 28.0000000
                  5 17.0000000
Mann-Whitney U test statistic =
                                 18.0000000
Probability is 0.0500435
Chi-square approximation =
                             3.8400000 with 1 df
Mann-Whitney U test for owls (Unknowns as adults)
The following results are for:
  AGE$
               = J
Data for the following results were selected according to:
      (MEASURE$= "PCDD/PCDF")
Categorical values encountered during processing are:
SITE$ (2 levels)
  O, R
Kruskal-Wallis One-Way Analysis of Variance for 14 cases
Dependent variable is FULL
Grouping variable is SITE$
               Count
                      Rank Sum
   Group
 0
                  9 67.0000000
 R
                  5 38.0000000
Mann-Whitney U test statistic = 22.0000000
Probability is
                 0.9468471
Chi-square approximation =
                           0.0044444 with 1 df
Kruskal-Wallis One-Way Analysis of Variance for 14 cases
Dependent variable is QUANT
Grouping variable is SITE$
                      Rank Sum
               Count
 0
                  9 77.0000000
                  5 28.0000000
Mann-Whitney U test statistic = 32.0000000
```

```
Probability is 0.2052745
Chi-square approximation = 1.6044444 with 1 df

The following results are for:
   AGE$ = A
Data for the following results were selected according to:
        (MEASURE$= "PCDD/PCDF")

Categorical values encountered during processing are:
SITE$ (2 levels)
   O, R

Kruskal-Wallis One-Way Analysis of Variance for 12 cases
Dependent variable is FULL
Grouping variable is SITE$

Group Count Rank Sum
```

O 7 57.0000000 R 5 21.0000000 Mann-Whitney U test statistic = 29.0000000 Probability is 0.0618185 Chi-square approximation = 3.4879121 with 1 df

Kruskal-Wallis One-Way Analysis of Variance for 12 cases Dependent variable is QUANT Grouping variable is SITE\$

Group Count Rank Sum
O 7 57.0000000
R 5 21.0000000
Mann-Whitney U test statistic = 29.0000000

Probability is 0.0618185

Chi-square approximation = 3.4879121 with 1 df

t-test for owls (unknowns not considered)

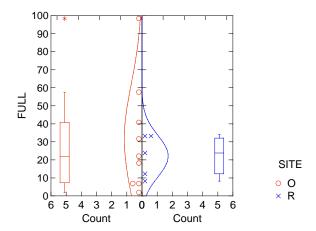
The following results are for:
AGE\$ = J

Separate Variance t =

Data for the following results were selected according to: (MEASURE\$= "PCDD/PCDF")

Two-sample t test on FULL grouped by SITE\$

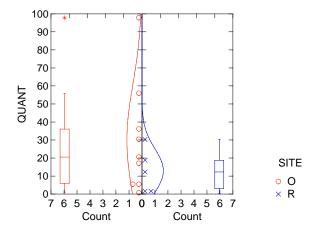
Mean	SD
31.4777778	30.8936797
22.0800000	11.5514934


Difference in Means = 9.3977778 95.00% CI = -1.593E+01 to 3.472E+01

Pooled Variance t = 0.6457595 df = 12 Prob = 0.5305900

Difference in Means = 9.3977778 95.00% CI = -2.231E+01 to 4.111E+01

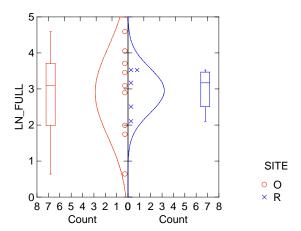
0.8157068 df = 11.1 Prob =


0.4317873

Two-sample t test on QUANT grouped by SITE\$

Mean	SD
29.8666667	30.9364267
13.0000000	12.1210561

Separate Variance t = 1.4477731 df = 11.3 Prob = 0.1748377Difference in Means = 16.8666667 95.00% CI = -8.6906860 to 4.242E+01



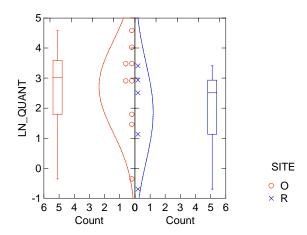
Two-sample t test on LN_FULL grouped by SITE\$

Mean	SD
2.9066460	1.2475601
2.9557271	0.6242881

Separate Variance t = -0.0979897 df = 12.0 Prob = 0.9235619 Difference in Means = -0.0490811 95.00% CI = -1.1406850 to 1.0425227

```
Pooled Variance t = -0.0814377 df = 12 Prob = 0.9364364 Difference in Means = -0.0490811 95.00% CI = -1.3622153 to 1.2640530
```


Two-sample t test on LN_QUANT grouped by SITE\$

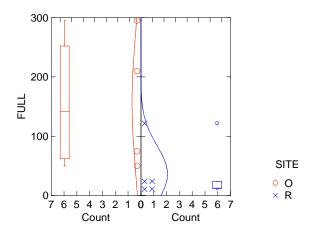

Mean	SD
2.7067141	1.5175630
1.8585718	1.6606183

Separate Variance t = 0.9438853 df = 7.7 Prob = 0.3737551

Difference in Means = 0.8481424 95.00% CI = -1.2361454 to 2.9324302

Pooled Variance t = 0.9705661 df = 12 Prob = 0.3509214

Difference in Means = 0.8481424 95.00% CI = -1.0558428 to 2.7521276

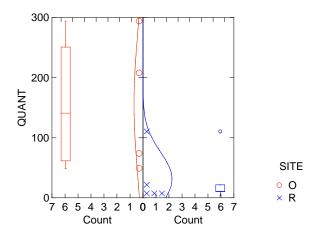

The following results are for:
 AGE\$ = A
Data for the following results were selected according to:
 (MEASURE\$= "PCDD/PCDF")

Two-sample t test on FULL grouped by SITE\$

Mean	SD
157.2000000	115.7142169
36.0000000	48.1450413

Separate Variance t = 1.9632753 df = 3.8 Prob = 0.1241740 Difference in Means = 121.2000000 95.00% CI = -5.318E+01 to 2.956E+02

Pooled Variance t = 2.1498157 df = 7 Prob = 0.0686323 Difference in Means = 121.2000000 95.00% CI = -1.211E+01 to 2.545E+02



Two-sample t test on QUANT grouped by SITE\$

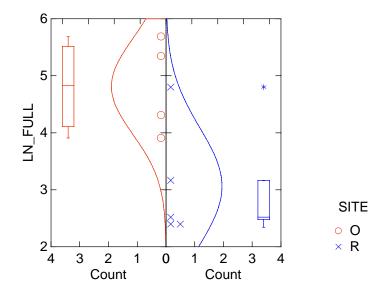
Mean	SD
156.2000000	115.3185443
31.3800000	44.6592320

Separate Variance t = 2.0455477 df = 3.7 Prob = 0.1154467Difference in Means = 124.8200000 95.00% CI = -4.969E+01 to 2.993E+02

Pooled Variance t = 2.2499980 df = 7 Prob = 0.0591983Difference in Means = 124.8200000 95.00% CI = -6.3589622 to 2.560E+02

Difference in Means =

Two-sample t test on LN_FULL grouped by SITE\$

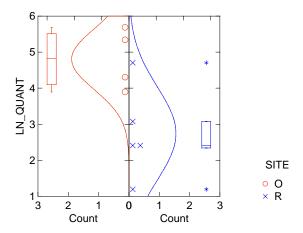

	4.8121603 3.0604505	0.8409462 1.0236714	
Separate Variance t = Difference in Means =	2.8180962 df = 7.0 1.7517098 95.00% CI		
Pooled Variance t =	2.7496707 df = 7	Prob =	0.0285175

1.7517098

Mean

SD

95.00% CI = 0.2452983 to 3.2581212



Two-sample t test on LN_QUANT grouped by SITE\$

	4	1.8041	819	(0.8439872		
	2	2.7448	192	1	L.2875589	_	
Separate Variance t = Difference in Means =					Prob = 0.3624853		241518 3.7562402
Pooled Variance t = Difference in Means =			-		Prob = 0.2840537		287945 3.8346719

Mean

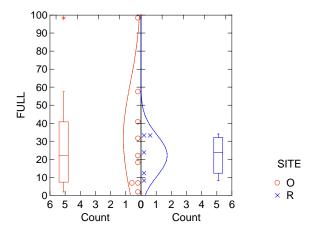
+01

t-test for owls unknowns as adults

SYSTAT Rectangular file C:\WINDOWS\Desktop\rma report\absolute data\Owlsumm4.syd, created Mon Sep 11, 2000 at 13:59:58, contains variables:

S. S AG MEASURE: PARTIAL Q LN_QUA FULL_1! QU LN_FULL_15 LN_QUA:

The following results are for:

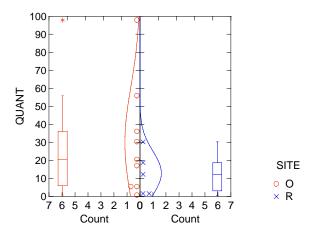

AGE\$ = J

Data for the following results were selected according to: (MEASURE\$= "PCDD/PCDF")

Two-sample t test on FULL grouped by SITE\$

		Me	ean	SD		•
		31.	4777778	30.893	6797	•
		22.	0800000	11.551	4934	_
Separate Variance t = Difference in Means =	0.8157068 9.3977778			Prob = = -1.593E+01	0.431 to 3	

Pooled Variance t = 0.6457595 df = 12 Prob = 0.5305900 Difference in Means = 9.3977778 95.00% CI = -2.231E+01 to 4.111E+01

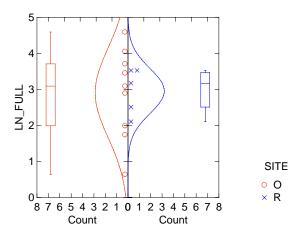


Two-sample t test on QUANT grouped by SITE\$

Mean	SD
29.8666667	30.9364267
13.0000000	12.1210561

Separate Variance t = 1.4477731 df = 11.3 Prob = 0.1748377Difference in Means = 16.8666667 95.00% CI = -8.6906860 to 4.242E+01

Pooled Variance t = 1.1536880 df = 12 Prob = 0.2710891Difference in Means = 16.8666667 95.00% CI = -1.499E+01 to 4.872E+01

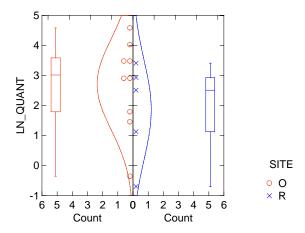


Two-sample t test on LN_FULL grouped by SITE\$

Mean	SD
2.9066460	1.2475601
 2.9557271	0.6242881

Separate Variance t = -0.0979897 df = 12.0 Prob = 0.9235619 Difference in Means = -0.0490811 95.00% CI = -1.1406850 to 1.0425227

Pooled Variance t = -0.0814377 df = 12 Prob = 0.9364364 Difference in Means = -0.0490811 95.00% CI = -1.3622153 to 1.2640530

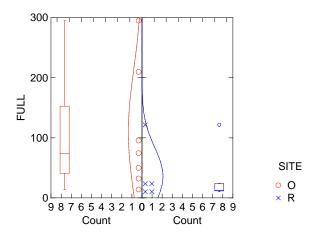


Two-sample t test on LN_QUANT grouped by SITE\$

Mean	SD
2.7067141	1.5175630
1.8585718	1.6606183

Separate Variance t = 0.9438853 df = 7.7 Prob = 0.3737551
Difference in Means = 0.8481424 95.00% CI = -1.2361454 to 2.9324302

Pooled Variance t = 0.9705661 df = 12 Prob = 0.3509214
Difference in Means = 0.8481424 95.00% CI = -1.0558428 to 2.7521276

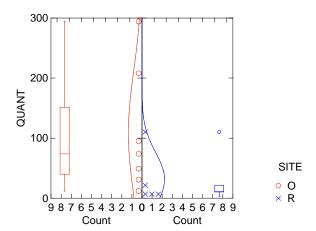

The following results are for:
 AGE\$ = A
Data for the following results were selected according to:
 (MEASURE\$= "PCDD/PCDF")

Two-sample t test on FULL grouped by SITE\$

Mean	SD
110.0714286	103.7433325
36.0000000	48.1450413

Separate Variance t = 1.6558262 df = 8.9 Prob = 0.1323512Difference in Means = 74.0714286 95.00% CI = -2.722E+01 to 1.754E+02

Pooled Variance t = 1.4720589 df = 10 Prob = 0.1717644 Difference in Means = 74.0714286 95.00% CI = -3.804E+01 to 1.862E+02



Two-sample t test on QUANT grouped by SITE\$

Mean	SD
108.9142857	103.7081551
31.3800000	44.6592320

Separate Variance t = 1.7624285 df = 8.6 Prob = 0.1132068 Difference in Means = 77.5342857 95.00% CI = -2.261E+01 to 1.777E+02

Pooled Variance t = 1.5550273 df = 10 Prob = 0.1509924 Difference in Means = 77.5342857 95.00% CI = -3.356E+01 to 1.886E+02

Pooled Variance t =

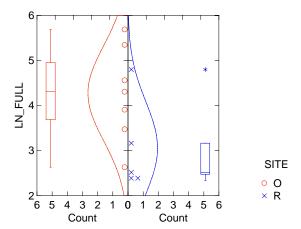
Difference in Means =

Two-sample t test on LN_FULL grouped by SITE\$

	4.2732385 3.0604505	1.0568597 1.0236714	•
Separate Variance t = Difference in Means =	1.9961180 df = 9.0 1.2127879 95.00% CI		0.0772000

1.9844857 df = 10

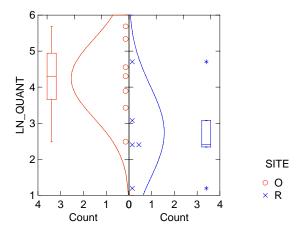
1.2127879


Mean

SD

Prob = 95.00% CI = -0.1489049 to 2.5744807

SD


0.0753086

Two-sample t test on LN_QUANT grouped by SITE\$

	4.2401312 2.7448192	1.0990779	_
Separate Variance t = Difference in Means =	2.1060126 df = 7.8 1.4953121 95.00% CI		
Pooled Variance t =	2.1676798 df = 10 1.4953121 95.00% CT	Prob = = -0.0417060	

Mean

Kolmogarov-Smirnov test for owl TCDD-EQ data

SYSTAT Rectangular file C:\WINDOWS\Desktop\rma report\owl_bio.SYD, created Wed Sep 13, 2000 at 16:21:42, contains variables:

SAMPLENUMBE\$ SAMPLEORIGI\$ AGECLASS\$ TCDDEQMAX TCDDEQFULL TCDDEQPART LN_FULL

The following results are for:

AGECLASS\$ = A SAMPLEORIGI\$ = R

Kolmogorov-Smirnov One Sample Test using Normal(0.00,1.00) distribution

Variable	N-of-Cases	MaxDif	Lilliefors Probability	y (2-tail)
TCDDEQMAX	5.000	0.429	0.003	
LN_FULL	5.000	0.218	0.880	

The following results are for:

AGECLASS\$ = A SAMPLEORIGI\$ = O

Kolmogorov-Smirnov One Sample Test using Normal(0.00,1.00) distribution

Variable	N-of-Cases	MaxDif	Lilliefors Probability (2-tail)
TCDDEQMAX LN_FULL	4.000	0.244	0.863 1.000

The following results are for:

AGECLASS\$ = J SAMPLEORIGI\$ = R

Kolmogorov-Smirnov One Sample Test using Normal(0.00,1.00) distribution

Variable	N-of-Cases	MaxDif	Lilliefors Probability (2-tail	.)
TCDDEQMAX	5.000	0.384	0.015	
LN_FULL	5.000	0.256	0.454	

The following results are for:

AGECLASS\$ = J SAMPLEORIGI\$ = O

Kolmogorov-Smirnov One Sample Test using Normal(0.00,1.00) distribution

Variable N-of-Cases MaxDif Lilliefors Probability (2-tail)

TCDDEQMAX 9.000 0.418 0.000
LN_FULL 9.000 0.178 0.671

The following results are for:

AGECLASS\$ = U SAMPLEORIGI\$ = O

Kolmogorov-Smirnov One Sample Test using Normal(0.00,1.00) distribution

Variable N-of-Cases MaxDif Lilliefors Probability (2-tail)

TCDDEQMAX 3.000 0.196 1.000
LN_FULL 3.000 0.305 0.567

Mann Whitney U test for differences in owl ages

The following results are for:

SAMPLEORIGI\$ = R

Data for the following results were selected according to: (AGECLASS\$ <> "U")

Categorical values encountered during processing are: AGECLASS\$ (2 levels)

A, J

Kruskal-Wallis One-Way Analysis of Variance for 10 cases Dependent variable is TCDDEQMAX Grouping variable is AGECLASS\$

Group Count Rank Sum

A 5 32.000

J 5 23.000

Mann-Whitney U test statistic = 17.000

Probability is 0.343

Chi-square approximation = 0.900 with 1 df

The following results are for:

SAMPLEORIGI\$ = 0

Data for the following results were selected according to: (AGECLASS\$<> "U")

Categorical values encountered during processing are: AGECLASS\$ (2 levels)

A, J

Kruskal-Wallis One-Way Analysis of Variance for 13 cases Dependent variable is TCDDEQMAX Grouping variable is AGECLASS\$

Chi-square approximation = 6.129 with 1 df

```
Mann whitney U test for differences by site in owls (unknowns not included)
```

```
The following results are for:
  AGECLASS$
              = A
Data for the following results were selected according to:
     (AGECLASS$<> "U")
Categorical values encountered during processing are:
SAMPLEORIGI$ (2 levels)
  O, R
Kruskal-Wallis One-Way Analysis of Variance for 9 cases
Dependent variable is TCDDEQMAX
Grouping variable is SAMPLEORIGI$
   Group
          Count Rank Sum
 0
                  4
                        27.0000
                  5
 R
                       18.0000
Mann-Whitney U test statistic =
                                    17.0000
Probability is 0.0864
Chi-square approximation =
                           2.9400 with 1 df
The following results are for:
  AGECLASS$
               = <sub>1</sub>T
Data for the following results were selected according to:
     (AGECLASS$<> "U")
Categorical values encountered during processing are:
SAMPLEORIGI$ (2 levels)
  O, R
```

Kruskal-Wallis One-Way Analysis of Variance for 14 cases Dependent variable is TCDDEQMAX Grouping variable is SAMPLEORIGI\$

Count Rank Sum Group 0 9 72.5000 5 32.5000 Mann-Whitney U test statistic = 27.5000 0.5002 Probability is Chi-square approximation = 0.4544 with 1 df

Mann whitney U test for differences by site in owls (unknowns as adults)

The following results are for: AGECLASS\$

Categorical values encountered during processing are: SAMPLEORIGI\$ (2 levels)

O, R

Kruskal-Wallis One-Way Analysis of Variance for 12 cases Dependent variable is TCDDEQMAX Grouping variable is SAMPLEORIGI\$

Group	Count	Rank Sum
0	7	51.5000
R	5	26.5000

Mann-Whitney U test statistic = 23.5000

Probability is 0.3290

Chi-square approximation = 0.9528 with 1 df

The following results are for:

AGECLASS\$ = J

Categorical values encountered during processing are: SAMPLEORIGI\$ (2 levels)

O, R

Kruskal-Wallis One-Way Analysis of Variance for 14 cases Dependent variable is TCDDEQMAX Grouping variable is SAMPLEORIGI\$

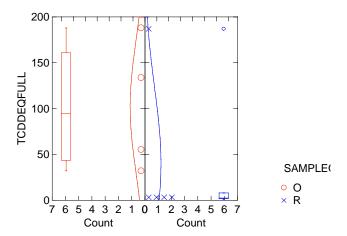
Group Count Rank Sum
O 9 72.5000
R 5 32.5000

Mann-Whitney U test statistic = 27.5000

Probability is 0.5002

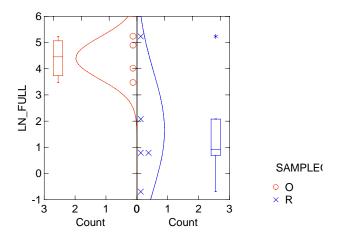
Chi-square approximation = 0.4544 with 1 df

t-tests for diff in owl TCDD-EQ (unknowns not used)


SYSTAT Rectangular file C:\WINDOWS\Desktop\rma report\owl_bio.SYD, created Fri Sep 15, 2000 at 06:58:08, contains variables:

SAMPLEN SAMPLEOR AGE(TC TCDDI TCDDEQ

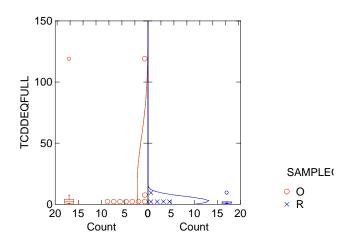
The following results are for:
AGECLASS\$ = A


Two-sample t test on TCDDEQFULL grouped by SAMPLEORIGI\$

	Mean	SD	
	102.3125	71.7869	
	40.0000	82.2245	
Separate Variance t = Difference in Means =	1.2126 df = 6.9 62.3125 95.00% CI	Prob = -59.5510	0.2651 to 184.1760
Pooled Variance t = Difference in Means =	1.1921 df = 7 62.3125 95.00% CI	Prob = -61.2914	0.2721 to 185.9164

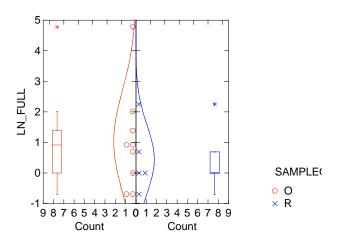
Two-sample t test on LN_FULL grouped by SAMPLEORIGI\$

	Mean	SD				
	4.4040	0.8083				
	1.6454	2.2334				
Separate Variance t	= 2.5603	df = 5.2	2 E	rob =		0.0486
Difference in Means	= 2.7587	95.00% C	[=	0.0252	to	5.4922
Pooled Variance t	= 2.3243	df = 7	E	rob =		0.0531
Difference in Means	= 2.7587	95.00% C	Ε =	-0.0479	to	5.5652



The following results are for: AGECLASS\$ = J

Two-sample t test on TCDDEQFULL grouped by SAMPLEORIGI\$


Mean	SD
15.5000	38.8732
 2.8000	3.7848

```
Separate Variance t =
                         0.9719 df = 8.3
                                              Prob =
Difference in Means =
                         12.7000
                                  95.00\% CI = -17.2637 to
 Pooled Variance t =
                          0.7157 df =
                                       12
                                               Prob =
                                                           0.4879
                         12.7000
                                 95.00% CI =
Difference in Means =
                                               -25.9642 to
                                                             51.3642
```


Two-sample t test on LN_FULL grouped by SAMPLEORIGI\$

	Mean	SD		
	1.0355	1.6693		
	0.4503	1.1198		
Separate Variance t = Difference in Means =		df = 11.3 95.00% CI =	Prob =	0.4503
Difference in Means -	0.3033	JJ.00° CI =	1.0504 60	3 2.22/0
Pooled Variance t =	0.6956	df = 12	Prob =	0.4999
Difference in Means =	0.5853	95.00% CI =	-1.2480 to	2.4185

The following results are for:
AGECLASS\$ = U

Two-sample t test on TCDDEQFULL grouped by SAMPLEORIGI\$

Mean	SD
2.8333	2.2546

Insufficient data for test.

Two-sample t test on LN_FULL grouped by SAMPLEORIGI\$

1	Group	N M	lean 💮	SD
0		3	0.6716	1.2092
		0		

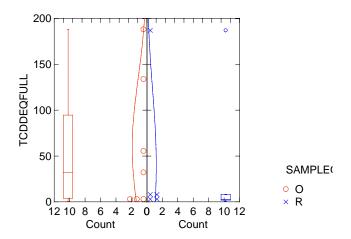
Insufficient data for test.

SYSTAT Rectangular file C:\WINDOWS\Desktop\rma report\owl_bio.SYD, created Thu Sep 14, 2000 at 17:27:12, contains variables:

SAMPLE	SAMPLE(AGECLAS	TCDDE	TCDDI	TCDDI
T.T	ਸ				

The following results are for:
AGECLASS\$ = A

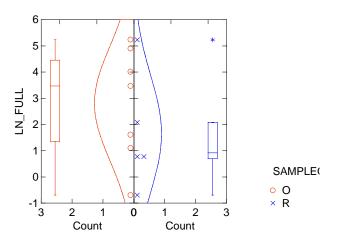
Two-sample t test on TCDDEQFULL grouped by SAMPLEORIGI\$


Mean	SD
59.6786	73.5244
40.0000	82.2245

```
Separate Variance t = 0.4269 df = 8.1 Prob = 0.6805

Difference in Means = 19.6786 95.00% CI = -86.3581 to 125.7153

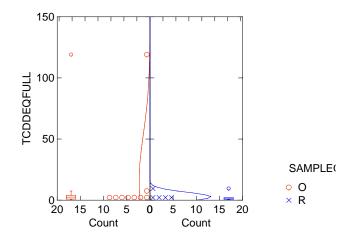
Pooled Variance t = 0.4358 df = 10 Prob = 0.6723


Difference in Means = 19.6786 95.00% CI = -80.9402 to 120.2973
```


Two-sample t test on LN_FULL grouped by SAMPLEORIGI\$

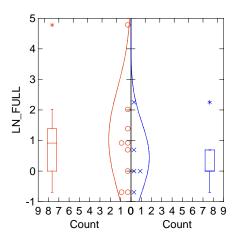
	Mean	SD		
	2.8044	2.1896		
	1.6454	2.2334		
Separate Variance t =	0.8936	df = 8.7	Prob =	0.3957
Difference in Means =	1.1591	95.00% CI	= -1.7930 t	o 4.1112

Pooled Variance t = 0.8968 df = 10 Prob = 0.3909 Difference in Means = 1.1591 95.00% CI = -1.7206 to 4.0388


SD

The following results are for:
AGECLASS\$ = J

Two-sample t test on TCDDEQFULL grouped by SAMPLEORIGI\$


·		15.5		38.8		-		
		۷.	8000	3.7	848	•		
	Separate Variance t Difference in Means					Prob -17.		0.3587 42.6637
	Pooled Variance t Difference in Means	0.7157 2.7000		12 .00% CI		Prob -25.	to	0.4879 51.3642

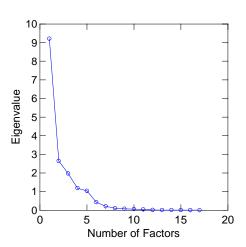
Mean

Two-sample t test on LN_FULL grouped by SAMPLEORIGI\$

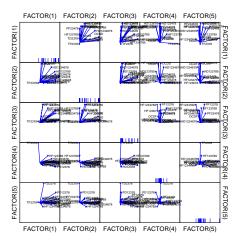
Group	N	Mean	SD			
0	9	1.0355	1.6693			
R	5	0.4503	1.1198			
Separate Variance t = Difference in Means =			df = 11.3 95.00% CI		Prob = -1.0564 t	
Pooled Variance t = Difference in Means =			df = 12 95.00% CI	=	Prob = -1 2480 t	0.4999

SAMPLE

o O × R


PCA ANALYSIS FOR OWLS

Latent Roots (Eigenvalues)


	1	2	3	4	5
	9.209	2.642	1.974	1.183	1.037
	6	7	8	9	10
	0.432	0.206	0.103	0.076	0.058
	11	12	13	14	15
	0.043	0.011	0.009	0.006	0.006
	16 0.005	17 0.000			
Component loadings					
HD1234678 HF1234678 HF1234789 HD123478 HF123478 HD123678 HF123678 HD123789 HF123789 PD12378	1 0.800 0.626 0.645 0.905 0.900 0.881 0.912 0.865 0.630 0.707	2 -0.417 -0.740 -0.145 0.148 0.274 0.248 0.296 -0.116 0.336 0.427	3 -0.181 -0.076 0.643 -0.272 0.238 -0.334 0.166 -0.392 0.507 -0.480	4 0.233 0.075 -0.304 0.024 -0.103 0.005 -0.148 -0.079 0.183 -0.052	5 -0.235 0.170 0.130 -0.271 -0.165 -0.150 -0.145 -0.020 0.005 0.173

PF12378	0.671	0.071	0.561	-0.027	0.414				
HF234678	0.965	0.022	0.047	-0.062	-0.144				
PF23478	0.745	0.451	0.044	0.057	0.061				
TD2378	0.256	0.430	-0.365	0.359	0.684				
TF2378	-0.050	0.099	0.365	0.884	-0.236				
OCDD	0.695	-0.654	-0.129	0.192	0.085				
OCDF	0.624	-0.717	0.091	0.016	0.188				
Variance Explained	by Components								
	1	2	3	4	5				
	9.209	2.642	1.974	1.183	1.037				
	9.209	2.042	1.9/4	1.103	1.037				
Percent of Total Va	riance Explain	ned							
	1	2	3	4	5				
	54.172	15.543	11.610	6.961	6.098				
Rotated Loading Mat	rix (VARIMAX,	Gamma =	1.0000)						
	1	2	3	4	5				
HD1234678	0.579	0.759	0.041	0.184	-0.091				
HF1234678	0.131	0.967	0.145	-0.078	0.013				
HF1234789	0.155	0.315	0.883	-0.136	-0.201				
HD123478	0.937	0.304	0.132	0.033	0.039				
HF123478	0.762	0.127	0.614	0.051	-0.057				
HD123678	0.932	0.230	0.127	-0.030	0.180				
HF123678	0.799	0.117	0.580	-0.015	-0.022				
HD123789	0.751	0.540	0.070	-0.197	0.152				
HF123789	0.404	-0.010	0.716	0.344	0.075				
PD12378	0.798	0.054	0.066	-0.205	0.509				
PF12378	0.159	0.249	0.897	0.024	0.225				
HF234678	0.770	0.402	0.450	0.000	-0.035				
PF23478	0.687	-0.009	0.454	0.086	0.287				
TD2378	0.195	-0.027	0.030	0.047	0.969				
TF2378	-0.081	-0.028	0.054	0.986	0.020				
OCDD	0.263	0.942	0.102	0.045	0.041				
OCDF	0.075	0.919	0.298	-0.084	-0.044				
"Variance" Explaine	ed by Rotated C	Components							
	1	2	3	4	5				
	5.917	4.037	3.386	1.254	1.451				
Percent of Total Variance Explained									
	and Dipidii	-							
	1	2	3	4	5				
	34.807	23.747	19.919	7.376	8.534				
	31.007	20.111		, , .	0.551				

Scree Plot

Factor Loadings Plot

